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TECHNOLOGICAL INNOVATION AND INEQUALITY IN 

HEALTH*

SHERRY GLIED AND ADRIANA LLERAS-MUNEY

The effect of education on health has been increasing over the past several decades. We hypoth-
esize that this increasing disparity is related to health-related technical progress: more-educated 
people are the fi rst to take advantage of technological advances that improve health. We test this hy-
pothesis using data on disease-specifi c mortality rates for 1980 and 1990, and cancer registry data for 
1973–1993. We estimate education gradients in mortality using compulsory schooling as a measure 
of education. We then relate these gradients to two measures of health-related innovation: the number 
of active drug ingredients available to treat a disease, and the rate of change in mortality from that 
disease. We fi nd that more-educated individuals have a greater survival advantage in those diseases 
for which there has been more health-related technological progress.

series of recent studies has shown that improvements in health have contributed 
signifi cantly to improvements in the standard of living over the past 50 years. Nordhaus 
(2002) found that the value of mortality declines in the United States in the twentieth 
century was roughly equivalent to the contemporaneous change in gross domestic product 
(GDP) per capita. Murphy and Topel (2003), in analyses computing the social value of re-
search and development between 1970 and 1990, found enormous gains from the resulting 
longevity—worth as much as $2.8 trillion annually. This period has seen many innovations 
that have contributed to improvements in health, from better public water systems, to in-
creased awareness of risk factors for many diseases, and to improvements in the quality of 
medical care. These technological changes, whether in the form of new knowledge or new 
products and services, have enabled people to live longer and better lives (Cutler, Deaton, 
and Lleras-Muney 2006).

Socioeconomic disparities in health have also been increasing over the past century 
(Elo and Preston 1996; Kunst et al. 2002; Pappas et al. 1993). In the United States, between 
1960 and 1986, the age-adjusted mortality rate for white men with high educational attain-
ment, defi ned as one or more years of college in 1960 and four or more years of college in 
1986, declined from 5.7 to 2.8 per 1,000; the rate declined only from 9 to 7.6 for those with 
low educational attainment, defi ned as those with fewer than 8 years of schooling in 1960 
and fewer than 11 years of schooling in 1986 (Pappas et al. 1993). Similar divergences 
have also been documented in the United Kingdom and in other European countries, in-
cluding those with comprehensive universal health insurance programs (Kunst et al. 2002; 
Mackenbach et al. 2003).

The growing disparities in health outcomes by socioeconomic status have attracted 
considerable research and policy attention. Many researchers have sought to explain the 
existence of socioeconomic differences in health status at a point in time (see, e.g., Cutler 
and Meara 2001). In their landmark study, Kitagwa and Hauser (1973) found signifi cant 
disparities in mortality by education, which varied by cause of death.
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We hypothesize that the robust rate of technological change affecting health and the 
increased gradients described above are related. Sociologists have conjectured that socio-
economic status is a “fundamental social cause” of gradients in health (Link et al. 1998). 
A fundamental cause involves access to resources that can be used to avoid or minimize 
risks, infl uences multiple risk factors, and affects multiple disease outcomes. In this view, 
more education, which is one component of socioeconomic status, enables people to better 
exploit new information and resources. Phelan et al. (2004) tested this hypothesis by com-
paring gradients in socioeconomic status at a point in time for diseases that are more or less 
preventable and found that gradients are greatest for the most preventable diseases. Phelan 
and Link (2005) examined changes in the gradient over time for selected diseases that have 
and have not become more preventable or treatable over time (heart disease, colon cancer, 
and lung cancer compared with brain and ovarian cancer). They documented that gradients 
have increased in those diseases that have become more preventable or treatable.

This paper extends this literature by looking at whether education gradients in health 
are related to measures of technological change across a broad spectrum of diseases. The 
hypothesis we test is that improvements in health technologies tend to increase disparities 
in health across education groups because education enhances the ability to exploit tech-
nological advances. The most-educated make the best initial use of this new information 
and adopt newer technologies fi rst. For this reason, the gradient increases where and when 
technological change occurs.1

Our hypothesis is also an extension to health of existing economic models of technologi-
cal change, particularly the theory of Nelson and Phelps (1966:72) that in the labor market, 
“the return to education is greater the faster the theoretical level of technology has been 
advancing.” A substantial literature examines this pattern empirically in the labor market 
(see, e.g., Allen 2001; Bartel and Sicherman 1999) and in the agricultural sector (Wozniak 
1984). Our hypothesis is further related to research in demography that argues that differen-
tial knowledge and diffusion of knowledge were at the root of differences in infant mortality 
rates in the early twentieth-century United States (Preston and Haines 1991).

In this paper, we test the hypothesis that education gradients increase when innovation 
increases by relating education gradients in mortality to two measures of health-related 
innovation: the change in mortality for a given disease (which accounts for all types of 
health-related progress) and the number of active drug ingredients recently approved to 
treat a disease. We use the Mortality Detail Files (MDF) for 1980 and 1990 (National Cen-
ter for Health Statistics, multiple years; 1968–1988) to examine mortality rates by disease, 
and the Surveillance Epidemiology and End Result (SEER) individual data to look at mor-
tality subsequent to cancer diagnosis for different types of cancer.

We estimate the effect of education on disease-specifi c mortality and cancer mortality 
conditional on diagnosis, respectively. We then look at whether the effect of education be-
comes larger for diseases for which there have been greater innovations. To obtain plausibly 
causal effects of education, we match individuals with the compulsory schooling laws that 
were in place in their state of birth when they were growing up. Because we can control for 
both state of birth and cohort of birth, our effects are estimated using changes in legislation 
within states over time.

We fi nd that more-educated individuals have a larger survival advantage from precisely 
those diseases that have seen more health-related innovation. We fi nd robust evidence that 
observed gradients in socioeconomic status are, in part, a consequence of the relationship 
between education and technological improvement.

This paper makes two contributions to the literature. First, it provides a test of the idea 
that innovation creates health inequalities, using measures of technology across all  diseases. 

1. In the absence of innovation, gradients may exist for other reasons, such as stress, and could even be 
reversed.



Technological Innovation and Inequality in Health 743

Second, by using compulsory schooling legislation as a measure of socioeconomic status, 
this paper makes a compelling case that education itself—rather than other characteristics 
that may be correlated with education—confers an increased health advantage in the pres-
ence of innovation.

THE RELATIONSHIPS BETWEEN EDUCATION, MORTALITY, AND 
TECHNOLOGICAL PROGRESS
Although many studies have documented that a strong correlation between education and 
health appears to be causal (see Grossman 2000 for a summary), skepticism remains be-
cause the mechanisms through which the relationship might arise are unclear. We suggest 
that more education increases the rate of adoption of innovations. This idea is accepted in 
many contexts, yet it is not as obvious that education accelerates diffusion in the context 
of health.

There are several mechanisms through which the relationship between education and 
health could be mediated by technological innovation. As in other contexts of diffusion, 
more-educated people are better informed about health-related innovation (National Sci-
ence Board 2000). Greater access to information and more-positive valuations of the ben-
efi ts of innovations could lead the more educated to adopt newer innovations before the less 
educated. As an example, de Walque (2004) reported that in Uganda, there was no relation-
ship between educational level and the incidence of AIDS in 1990; however, by 2000 and 
after several information campaigns on prevention, the more educated were more likely to 
use condoms and less likely to have AIDS. When analyzing the effects of the 1964 Surgeon 
General’s Report, Meara (2001:27) concluded that “the response to knowledge plays a more 
important role than knowledge itself in creating differential health behavior.”

Alternatively, more-educated people may be more adept at implementing new tech-
nologies (such as computers) in their early stages. Over time, technologies (which may vary 
in their complexity at introduction) tend to become simpler to use, and the best techniques 
for using them are developed. This process of adaptation may make the technology more 
accessible to less-educated people. In the health context, more-educated people may be 
better able to understand and tolerate complex dosing regimes or side effects. In the case of 
new HIV drugs, for example, complex dosing regimes contributed to reduced early diffu-
sion of the drugs to less-educated groups. As physicians and patients gained expertise with 
the drugs, the drugs diffused to other populations (Cunningham et al. 2000).

A third explanation, focusing on innovations in medical care, draws on the enormous 
variations in the practice patterns of medical professionals (e.g., see Chandra and Skinner 
2003). More-educated people could have an advantage in the presence of innovation if they 
are more effective at searching for high-quality providers with access to newer technolo-
gies.2 Researchers have indeed found that people of higher socioeconomic status, such as 
the more educated, are more likely to participate in clinical trials, where they would gain 
access to the newest treatments (Sateren et al. 2002). Several studies have documented that 
educational attainment substantially increases the propensity to seek care from medical spe-
cialists, even after controlling for health status, and even in countries with national health 
insurance systems (Bongers et al. 1997; Van Doorslaer, Koolman, and Jones 2004).

Fourth, the correlation between education and technology adoption could operate di-
rectly or indirectly through income, which is another component of socioeconomic status. 
A higher level of education raises income, and income might provide better fi nancial access 
to quality care. Those with higher incomes are also able to support better-endowed hospitals 
and more medical specialists. Unfortunately, our data do not allow us to examine any of 
these mechanisms directly and systematically.

2. For example, Bradley (1991) reviewed the literature on prescription behavior by physicians. He found wide 
variation in the prescription behavior of doctors and in the rate at which doctors start prescribing new drugs.
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DATA

We use two sources of mortality data for this project: the Mortality Detail Files for 1980 
and 1990 (MDF 80–90) and the SEER data for 1973–1993. Both these data sources include 
information on state of birth, which we need to assign individuals to the years of compul-
sory schooling they were subject to.

MDF 80–90
We calculate four-year mortality rates by disease by matching cause-specifi c mortality 
counts in the MDF fi les with population data from the census in 1980 and 1990. We con-
struct death rates by cause of death (25 diseases, using the 34 causes-of-death classifi cation 
and excluding deaths from maternal causes, congenital debilities, and external causes), gen-
der, cohort, and state of birth for two periods: 1980–1983 and 1990–1993.3 We match each 
cell in these data to the compulsory attendance and child labor laws in place in that state 
of birth in the year when the cohort was 14 years old.4 We restrict our analyses to whites 
born between 1901 and 1925 in the 48 U.S. states (thus excluding foreign-born) because 
compulsory schooling laws were most effective in the fi rst half of the twentieth century and 
because they affected only whites (see Lleras-Muney 2002).

Table 1 provides summary statistics for these data. There are 119,975 observations, 
each representing the mortality rate for a given cause (25), gender (2), cohort (25), state 
of birth (48), and year group (2). Note that the sample size is not exactly equal to 120,000 
because of a few missing cells. The main causes of death in these data are cardiovascular 
disease, cancer, and respiratory diseases. The number of compulsory years of schooling 
ranged from 0 to 10 for the cohorts we study.5

SEER
We use the Surveillance Epidemiology and End Result (SEER) Cancer Incidence Public 
Use Database collected by the National Cancer Institute to examine the effect of progress 
on cancer mortality. Unlike the MDF, these data allow us to examine the effects of death 
conditional on incidence, at the individual level, using more covariates.

The SEER data contain information on every person diagnosed with cancer from 1973 
to 1998 in nine SEER registries. (Registries are composed of specifi c counties located in 
San Francisco, CA; Connecticut; Detroit, MI; Hawaii; Iowa; New Mexico; Seattle, WA; 
Utah; and Atlanta, GA.) The National Cancer Institute suggests that these registries con-
stitute a nationally representative sample of patients. Individuals who leave these counties 
are followed by the registry to establish their status as of the last year of the data—in our 
case, up to 1998. Information on vital status was recorded for all individuals in the sample 
as of 1998. These data allow us to look at the probability of dying within fi ve years (the 
standard in epidemiology), conditional on cancer diagnosis, for individuals diagnosed with 
cancer between 1973 and 1993.6 We exclude individuals who died from external causes and 
assume that individuals died from the cancer with which they were initially diagnosed.7 The 
SEER data include information on state of birth and year of birth, so we can match SEER 

3. We also conducted the analyses in the paper using a fi ner disease categorization (60 diseases based on the 
72 cause-of-death recodes) and omitting any residual category. The results are qualitatively very similar to those 
presented in the current paper (results are available from the authors upon request). 

4. There may be some misclassifi cation error in the assignment of compulsory schooling attributable to family 
mobility, but prior research suggests that the effect of this error is likely to be small (Lleras-Muney 2002).

5. The data on compulsory attendance and child labor laws were collected from multiple sources (for details, 
see Lleras-Muney 2002). We use only two age-limit laws: the age at which a child had to enter school and the age 
at which a child could get a work permit and leave school. The difference between these two variables measures 
the implicit number of years a child had to attend school.

6. To avoid censoring, we drop individuals diagnosed after 1993.
7. Our results are not sensitive to using the actual cause of death instead of the diagnosed cancer.
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Table 1. Mortality Cause-of-Death Files, 1980 and 1990 (MDF 80–90): Summary Statistics

Variable Disease Recode Mean SD

Four-Year Cause-Specifi c Mortality Rate  0.0067 0.0148

Years of Compulsory Schooling  6.6185 1.3879

Year   1984.9 5

Age  71.9965 8.7725

25 Causes-of-Death Distribution (ICD-9 codes in parentheses)a  

Tuberculosis (010–018) 10 0.0001 0.0002

Syphilis (090–097) 20 0.0000 0.0001

Other infectious disease (001–009, 020–041, 042–044, 
045–088, 098–139) 30 0.0020 0.0024

Digestive organs cancer (150–159) 50 0.0102 0.0057

Respiratory organs cancer (160–190) 60 0.0113 0.0074

Breast cancer (174–175) 70 0.0023 0.0026

Genital organs cancer (179–187) 80 0.0060 0.0071

Urinary organs cancer (188–189) 90 0.0020 0.0020

Leukemia (204–208) 100 0.0016 0.0014

Other cancers (140–149, 170–173, 190–203) 110 0.0075 0.0040

Diabetes (250) 120 0.0037 0.0030

Rheumatic fever and rheumatic heart disease (390–398) 150 0.0006 0.0007

Hypertensive heart disease (402, 404) 160 0.0019 0.0020

Ischemic heart disease (410–414) 170 0.0511 0.0403

Other heart disease (415–429) 180 0.0198 0.0206

Hypertension with or without heart disease (401, 403) 190 0.0008 0.0012

Cerebrovascular diseases (430–438) 200 0.0159 0.0163

Atherosclerosis 210 0.0022 0.0030

Other diseases of arteries, arterioles, and capillaries (440) 220 0.0027 0.0026

Pneumonia and infl uenza (480–487) 230 0.0082 0.0117

Chronic obstructive pulmonary disease, COPD (490–496) 240 0.0103 0.0089

Ulcer of stomach and duodenum (531–533) 250 0.0007 0.0008

Chronic liver disease or cirrhosis (571) 260 0.0014 0.0009

Nephritis, nephritic syndrome, and nephrosis (580–589) 270 0.0020 0.0025

All others (excluding pregnancy, maternity, congenital, and 
external causes) 280 0.0026 0.0030

Notes: Th e sample is white cohorts born between 1901 and 1925 in the 48 U.S. states, matched to compulsory schooling 
by state of birth and year of birth. Death rates are calculated at the gender, year, state-of-birth, and year-of-birth level for each 
disease. Th e statistics are not weighted by cell size. N = 119,975.

aICD-9 causes of death were classifi ed into 25 categories using the 34-cause categorization that is used in the National 
Center for Health Statistics publications.

registrants to compulsory attendance and child labor laws. We limit the sample to whites 
born in the 48 states between 1901 and 1925 (as in the MDF 80–90).

Summary statistics for the fi nal SEER sample are shown in Table 2. The sample con-
sists of 625,958 individuals. Our sample is relatively old because we exclude people born 
after 1925; therefore, average age at diagnosis for this sample is around 70, which is older 
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Table 2. SEER Summary Statistics

 
Full Sample:

 
All Individuals Diagnosed  Restricted Sample:

 Between 1973 and 1993,  Individuals Diagnosed
 With No Missing Values  in 1983 and 1993 Only

 

 (N = 625,958) (N = 67,749)  _____________________   _____________________

Variable Mean SD Mean SD

Years of Compulsory School 6.939 1.065 6.966 1.022

Female = 1 0.468 0.499 0.455 0.498

Age at Diagnosis 69.397 7.991 72.530 7.391

Hispanic = 1 0.020 0.142 0.022 0.145

Married = 1 0.640 0.480 0.603 0.489

Died Within Five Years of Diagnosis = 1 0.634 0.482 0.682 0.466

Year of Diagnosis (1973 = 1) 11.747 5.726 15.576 4.982

Cancer Site (broad categories)

Bones and joints 0.00 0.03 0.00 0.03

Brain and other nervous system 0.01 0.11 0.01 0.11

Breast 0.12 0.33 0.11 0.32

Digestive system 0.23 0.42 0.24 0.43

Endocrine system 0.00 0.07 0.00 0.06

Eye and orbit 0.00 0.04 0.00 0.04

Genital system 0.20 0.40 0.20 0.40

Leukemia 0.03 0.16 0.03 0.16

Lymphomas 0.03 0.18 0.03 0.18

Buccal cavity and pharynx 0.03 0.17 0.03 0.16

Multiple myeloma 0.01 0.11 0.01 0.11

Ill-defi ned and unspecifi ed sites 0.03 0.17 0.03 0.18

Respiratory system 0.20 0.40 0.20 0.40

Skin 0.02 0.13 0.02 0.13

Soft tissue 0.00 0.06 0.00 0.06

Urinary system 0.07 0.26 0.07 0.26

than the average age in the full SEER data (62). About two-thirds of the population died 
within fi ve years of diagnosis,8 most frequently from cancers of the digestive system, the 
respiratory system, and the genital system. We also report summary statistics for individu-
als diagnosed only in 1973 and 1983 because we use this subsample in many specifi cations 
in this paper. As the table shows, this sample, although much smaller (N = 67,749), has the 
same average characteristics as the larger sample.

Measures of Progress
Drug approvals. One measure of innovation is the number of active ingredients (new mo-
lecular entities) approved by the Food and Drug Administration (FDA) to treat a particular 

8. Not surprisingly, because we are calculating mortality conditional on a cancer diagnosis, the average fi ve-
year mortality rate is much higher than in the cause-specifi c data.
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disease. This measure captures the role of one component of innovations in medical care in 
generating gradients. Estimates suggest that about half of the recent improvement in mor-
tality is attributable to improvements in medical care (Cutler, Rosen, and Vijan 2006).

We use the number of active ingredients rather than drug approvals because the former 
constitute greater pharmaceutical innovations: only about 2,000 active ingredients have ap-
peared in the United States since the FDA’s inception in 1938, yet more than 80,000 drugs 
have been approved by the FDA.9 Because new ingredients are considered to be major in-
novations, our measure excludes drugs that are close substitutes for existing treatments. For 
simplicity, we refer to active ingredients as drugs in the rest of the paper. The data on active 
ingredients, the condition(s) they were approved to treat,11 and their FDA approval dates 
were given to us by Frank Lichtenberg and originally were obtained through a Freedom of 
Information Act request to the FDA.10

We match the active ingredient data to our sample using ICD-9 condition codes.11 For 
the disease specifi c mortality data (MDF 80–90), we match mortality rates with the number 
of drugs approved in the previous fi ve years (e.g., 1980–1983 mortality is matched to the 
number of drugs approved between 1975 and 1979) or in the previous 10 years (1970–
1979). We also repeat these analyses using the stock of drugs—that is, the total number of 
drugs in existence to treat a condition.

In the SEER cancer data, we use both the stock of drugs at a point in time and the 
number of drugs newly introduced (the fl ow of drugs). When using the fl ow of new drugs, 
we match individuals with the number of drugs approved in the prior 10 years and restrict 
our attention only to those diagnosed in 1983 and 1993. Alternatively, we match individuals 
with the number of drugs in existence as of 2000 and look at all individuals diagnosed be-
tween 1973 and 1993. We prefer the stock measure because very few new cancer drugs are 
approved in any given year, and many of these are used for several cancer types, so there 
is little variation in our data. The stock measure overstates the number of drugs available 
to individuals at the beginning of the period. The stock of drug measure also refl ects the 
nature of innovation in cancer chemotherapy, which often occurs through the use of novel 
combinations of existing drugs or through new modes of delivery of existing drugs, and the 
extent of such secondary innovations depends on the stock of existing drugs available.

The match between drugs and diseases is better in the SEER than in the mortality data 
because drugs typically treat specifi c diseases (rather than causes of death), and in the 
SEER, we know each individual’s particular condition. In the mortality data, the match 
between drugs and causes of death can be misleading: for example, drugs used to control 
diabetes can reduce death rates attributable not only to diabetes but also to heart disease, 
stroke, kidney failure, and other conditions.

Changes in mortality rates. New drug approvals are a tangible but very limited mea-
sure of health-related innovation. Many drugs are subsequently used to treat diseases that 
they were not originally approved for (i.e., off-label), and these innovations would not be 
captured in our drug measure. The drug measure does not capture nondrug medical inno-
vations at all (except to the extent that they occur concurrently with drug innovation), and 
some of the major innovations in medicine in the last decades (such as angioplasty or MRI) 
are surgical or diagnostic innovations (Fuchs and Sox 2001). These latter innovations may 

9. See Lleras-Muney and Lichtenberg (2002) for a discussion of how the data were constructed and how 
FDA approval dates were coded.

10. Unfortunately, not all drugs in our data can be dated: some may have been invented prior to the creation 
of the FDA in 1938, and there are others for which we could not impute a date of approval. The dates of approval 
in our data range from 1938 to 2001, with a mean of 1973.

11. This measure does not capture off-label use of drugs. If off-label use is common, there will be more 
measurement error in our innovation measure. Off-label use would be captured in analyses that use changes in 
mortality by disease, discussed in the next section. 
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affect education gradients differently than do drugs, potentially generating either greater 
or smaller gradients. Finally, the drug measure fails to capture innovations in knowledge 
about modifying disease risk through, for example, diet and exercise, which explain the 
remaining half of mortality gains.

As an alternative measure of progress, we compute the change in age-adjusted mor-
tality by disease (from published age-adjusted mortality rates by cause and year) and the 
change in age-adjusted fi ve-year survival conditional on diagnosis (for the SEER data) 
in the previous decade. Thus, for the disease-specifi c data, we can calculate the absolute 
change in age-adjusted mortality from 1970 to 1979 and 1980 to 1989.12 We match mortal-
ity rates in 1980 and 1990 to the absolute change in age-adjusted mortality from 1970 to 
1979 and 1980 to 1989, respectively.

Likewise, for the SEER cancer data, we calculate the change in fi ve-year survival con-
ditional on diagnosis from 1973 to 1982 (matched to individuals in 1983) and from 1983 
to 1992 (matched to individuals in 1993). We also calculate changes in survival conditional 
on the stage of cancer at diagnosis (for cancers for which stage is assessed).

The mortality measure, unlike the drug measure, captures all aspects of progress in 
disease prevention and treatment. This measure of progress does not precisely capture the 
timing of innovations that led to mortality declines. That is, innovations in prevention and 
screening that took place several decades earlier may be associated with mortality declines 
today. Our analysis would infer that such innovations (which we observe only as declines in 
overall mortality today) generate disparities today. We cannot identify the source or timing 
of the original innovation. These indices are also based on past observations of the data that 
also compose our dependent variables, so that the specifi cations using the mortality indices 
are not as econometrically robust as those using the drug measures.13 

Summary statistics on our progress measures are provided in Table 3. These measures 
suggest that for all causes of mortality, the rate of health-related innovation measured us-
ing drugs accelerated in the 1980s, whereas the rate measured using age-adjusted mortal-
ity shows more progress in the 1970s. This suggests that nondrug innovation was a more 
important factor in the earlier period. For cancer, the rate of innovation using drugs was 
more rapid in the 1970s, whereas changes in survival saw larger improvements between 
1983 and 1993 than in the prior decade. Moreover, a greater share of the progress against 
cancer in the earlier period appears to be attributable to improvements in diagnosis because 
conditioning on stage reduces the magnitude of progress in the early period, but not in the 
later period.

In sum, we measure education gradients in all-cause mortality (using the MDF data) and 
education gradients in cancer mortality conditional on diagnosis (using the SEER data). We 
use two measures of progress in each case. The fi rst measure—new drug  approvals— captures 
pharmaceutical innovations in medical care. The second measure—changes in age-adjusted 
mortality—captures all innovations, wherever they may occur, that affect health.

EMPIRICAL STRATEGY
The hypothesis that gradients are related to progress suggests an empirical strategy in 
which we would estimate a model of the probability of dying, where education is interacted 
with progress:

P died education education progre( )= = + + ×1 0 1 2β β β sss progress e+ + +β γ3 X ,  (1)

12. For small causes of death, percent changes are very misleading.
13. These indices include lagged dependent variables, which can cause inconsistency in panel models with 

fi xed effects (Nickell 1981). If we use changes in mortality as a measure of progress and do not include fi xed ef-
fects, we fi nd very similar estimates (results available upon request). 
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Table 3. Summary Statistics for Various Progress Measures

 Number of
 Observations Mean SD Minimum Maximum     

Measures for All Causes of Death     

Number of drugs 

Total (ever approved) 25 62.6  74.69  0 338

By decade     

Approved between 1970 and 1979 25 7.6 9.6 0 41

Approved between 1980 and 1989 25 9.72 12.81 0 52

By fi ve-year period

Approved between 1975 and 1979 25  3.64  4.62  0 15

Approved between 1985 and 1989 25  4.6  5.96  0 26

Improvements in mortality

Change in age-adjusted mortality, 70–79 25 6.72  32.89  –56.21  144.1

Change in age-adjusted mortality, 80–89 25 3.25  17.56  –13.82  79.3

Measures for Cancer Progress

Number of drugs

Number of drugs by 1993 81 9.654 10.015 0.00 48.00

Number of drugs approved between 
1973 and 1982 81 1.72 1.68 0 5

Number of drugs approved between 
1983 and 1992a 80 1.24 1.6 0 6

Improvements in mortality

Change in fi ve-year survival conditional 
on diagnosis from 1973 to 1982 81 0.025 0.108 –0.26 0.55

Change in fi ve-year survival conditional 
on diagnosis from 1983 to 1992a 80 0.037 0.087 –0.29 0.32

Change in fi ve-year survival conditional 
on diagnosis and local stage from 
1973 to 1982b 141 0.018 0.121 –0.38 0.55

Change in fi ve-year survival conditional 
on diagnosis and local stage from 
1983 to 1992b 145 0.037 0.121 –0.33 1.00     

Notes: Age-adjusted mortality is calculated as the number of deaths per 100,000. Changes in age-adjusted mortality are 
calculated as the level diff erence between the early period and the later period; therefore, positive numbers are decreases in age-
adjusted mortality or progress. Because small diseases have very small mortality rates, we did not calculate percentage changes.

Sources: Data on drug approvals were provided by Frank Lichtenberg; see the text. Age-adjusted mortality by cause since 
1950 by year and disease were obtained from unpublished tables provided by the National Center for Health Statistics “290 
Trend Tables from CDC/NCHS, National Vital Statistics System, Mortality Data” (tables HIST290_5059, HIST290_6067, 
HIST290_6878, and HIST290_7998), which can be found online at http://www.cdc.gov/nchs/datawh/statab/unpubd/ 
mortabs/hist290.htm. Changes in fi ve-year survival rates by diagnosis or by diagnosis and stage were calculated by the authors 
using SEER data.

aTh ere was no one diagnosed with one of the cancers in the list of 81 possible cancers in 1992.
bTh e number of observations is not 81 × 2 because not all cancers have stage defi ned. Also there are some cancers × stage 

cells that are empty.

where X might include disease fi xed effects, year fi xed effects, disease × year fi xed effects, 
and other individual characteristics. Prior research suggests that β1 should be negative, 
refl ecting the steady-state advantage of the more educated (the more educated have lower 
mortality rates), and β3 should be negative because progress improves survival. Although, 
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a priori, the interaction term β2 may be negative, positive, or zero, if the more educated do 
indeed benefi t fi rst from innovation, β2 (the interaction between education and progress) 
should be negative, meaning that education should lower mortality more for those diseases 
with larger innovations in the recent past.

We do not estimate this model for two reasons. First, there are no major data sets that 
contain both educational attainment and detailed cause of death, and span a long period of 
time. Thus, we could not estimate this model directly even if we wished to do so.

Second, a major concern in estimating the model and using actual education is that for 
many reasons, those individuals who choose to obtain more education are also more likely 
to be healthier than those who do not; for example, they may be more patient (Fuchs 1982), 
or their parents may have been wealthier. In response to this concern, recent papers have 
used compulsory schooling laws to obtain consistent causal estimates of the effects of edu-
cation, exploiting the fact that compulsory education laws (which specifi ed the number of 
years that a child had to attend school) meant that individuals within a state no longer could 
choose the amount of schooling they obtained.14 This implies that these laws can be used as 
instruments for education. Studies (most recently, Moretti and Lochner 2004) have shown 
that these laws had a substantial impact on educational attainment,15 and that it is plausible 
that compulsory schooling laws affected mortality only though their effect on education 
(Lleras-Muney 2005; Oreopolous 2003). We follow this strategy here, using compulsory 
schooling as a measure of educational attainment. Because the specifi cation includes state-
of-birth and cohort-of-birth fi xed effects, the effect of compulsory schooling is identifi ed by 
variation within states over time. If some states are consistently more  progressive in social 
policy than others, this state characteristic will be captured by the state fi xed effect and 
will not bias the estimated effects of education. Similarly, if some birth cohorts were more 
likely to be exposed to some common health shock (such as the 1918 infl uenza pandemic) 
than others, this effect will be captured by the cohort fi xed effect. Changes in other state 
policies or cohort characteristics would bias the effects of increased education only if they 
were exactly contemporaneous with changes in compulsory schooling within each state.

Empirical Model for the MDF Data
Using the grouped MDF data, we estimate the following linear probability model:

MR CS CS progressdsct sc sc dt= + + × + + +β β β γ0 1 2 X cηη μss dt+ λλ + edsct ,  (2)

where MR is the four-year mortality rate for cause d in year t, for individuals born in state 
s of cohort c. CS is the number of years of compulsory schooling for individuals of cohort 
c born in state s, and progress is a measure of innovation for disease d that occurred in the 
years up to year t. We control for 47 state-of-birth dummy variables (μs), 24 cohort dummy 
variables (ηηc), 24 disease dummy variables, a decade dummy variable, and disease × year 
dummy variables (λλdt); thus, progress main effects are not estimated. We also control for 
age and age squared (X) and estimate this equation separately by gender.16 The coeffi cient 
of interest is β2, which measures whether the effect of education is larger for diseases with 
greater innovation. Because we are including disease dummy variables, our estimates are 

14. However, these laws may have had differential effects on populations within a state (e.g., urban versus 
rural residents). Average differences across states are captured by the state-of-birth dummy variables, but we cannot 
identify these differential effects within state when using these data.

15. Also see Acemoglu and Angrist (1999), Angrist and Krueger (1991), Goldin and Katz (2003), Lleras-
Muney (2002), Margo and Finnegan (1996), and Schmidt (1996).

16. We repeat our analyses separately by gender. Our hypothesis does not specifi cally predict variation in 
the effect of education by gender, but this specifi cation is consistent with prior research, which suggests that the 
effect of most covariates (e.g., age and education) varies by gender as well as the fact that men and women are 
susceptible to different diseases (particularly in the case of cancers).
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identifi ed using variation within diseases over time: thus, we are testing whether education 
gradients increase for a given disease when innovation increases rather than comparing 
gradients among diseases at a point in time.

Empirical Model for the SEER Cancer Data
Using the SEER cancer data at the individual level, we estimate the following linear prob-
ability model:

P died CS CS progressidsct sc sc dt( )= = + + × +1 0 1 2β β β XXidsct s dtγ λλ+ + + +ηη μc idscte ,  (3)

where P is the probability of dying within fi ve years for individual i diagnosed with dis-
ease d in year t, of cohort c and born in state s. CS is the number of years of compulsory 
schooling for individuals of cohort c born in state s, and progress is a measure of innovation 
for disease d that occurred in the years up to year t. Xidsct is a vector of individual char-
acteristics including age, age squared, 138 county-of-current-residence dummy variables, 
fi ve stage-of-diagnosis dummy variables, year-of-diagnosis dummy variables, 80 disease 
dummy variables, stage × disease dummy variables (comparing cancers at the same stage 
over time), and disease × year dummy variables λλdt. Thus, progress main effects are not 
estimated. This specifi cation also controls for 47 state-of-birth dummy variables (μs) and 
24 cohort dummy variables (ηηc). We estimate this equation separately by gender. Unlike 
the MDF, the SEER data include information on county of current residence. By includ-
ing dummy variables for each of these counties, we can control for differences that arise 
because of geographic disparities in access and quality of care.

Choice of Statistical Model
Although for both the SEER data (individual level) and the MDF data (group rates), outcome 
variables fall between 0 and 1, we report estimates of Eqs. (2) and (3) using linear probability 
models. We use this functional form because our primary interest is in the coeffi cients on the 
interaction terms between compulsory schooling and technological progress. The interpreta-
tion of interaction terms in nonlinear models is complex and problematic. As Ai and Norton 
(2003:123) showed, “The magnitude of the interaction effect in nonlinear models does not 
equal the marginal effect of the interaction term, can be of opposite sign, and its statistical 
signifi cance is not calculated by standard software.” Additionally, calculating the marginal 
effects is particularly challenging given that our model includes disease fi xed effects. We 
repeated our analyses by using a logistic model. The signs and signifi cance levels of our 
point estimates for the principal coeffi cients of interest (compulsory school and its interac-
tion with the two progress measures) are fully consistent with those of the linear probability 
model (results available from the authors on request). The results reported here use a linear 
probability model, which is more straightforward to interpret.

DOCUMENTING THE GRADIENT
We begin by documenting the education gradient in the MDF mortality and SEER cancer 
data using the number of years of compulsory schooling as a measure of education. If com-
pulsory schooling laws affected mortality only through their effect on education, estimates 
from this (reduced-form) equation can be interpreted as causal.

Results Using the MDF Data
Table 4 describes these gradients in the disease-specifi c, four-year mortality data (MDF 
80–90). Recall that these data are aggregated into cells defi ned by cause of death, gender, 
cohort, state of birth, and year; and that the regression includes gender, age, age squared, 
year dummy variables, and dummy variables for cohort and state of birth, as well as cause-
of-death dummy variables interacted with year. Because we include state-of-birth and cohort 
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dummy variables, the effect of compulsory schooling laws is identifi ed from variations in the 
laws within states over time. We fi nd negative effects of compulsory schooling on mortality 
for both genders, although they are statistically signifi cant only for men.

Results Using the SEER Cancer Data
In Table 5, we document education gradients in the SEER data. These data contain observa-
tions on individuals, and the model we estimate includes state-of-birth dummy variables, 
cohort dummy variables, county dummy variables, year-of-diagnosis dummy variables, site 
dummy variables, stage-of-diagnosis dummy variables, stage × disease dummy variables, 
and disease × year dummy variables. Again, we identify the effect of compulsory schooling 
from variation in the laws within states overtime. We fi nd a negative and signifi cant effect 
of compulsory schooling on mortality for both males and females. We repeat the analyses 
for those diagnosed only in 1983 or 1993 because this sample is the one that we use to 
examine changes in survival rates or fl ows of new drugs. The coeffi cients are of similar 
magnitude but are statistically insignifi cant in this smaller sample.

Magnitude of the Effects
To better interpret these effects, we compute the effect of education that is implied by our 
estimates of the effect of compulsory schooling on mortality.

First, we use the 1970, 1980, and 1990 censuses to estimate the effect of compulsory 
schooling on educational attainment, measured in years. We fi nd that the effect of one more 
year of compulsory schooling on education is about 0.05 of a year of schooling for both 
genders (see column 2 of Table 4).

The estimate of the effect of education on mortality can be calculated as the ratio of the 
effect of compulsory schooling on mortality reported in column 1, to the effect of compul-
sory schooling on education reported in column 2. (This is known in economics as the two-
sample instrumental variables estimate.) Using this method, we fi nd that the implied effect 
of education on unconditional mortality is –0.0009. At the mean, this coeffi cient implies 

Table 4. Two-Sample Instrumental Variables (TSIV) Estimates of the Eff ect of Education on Four-

Year Mortality Rates by Year, Gender, State of Birth, Year of Birth, and Cause of Death 

Estimated using Mortality Cause-of-Death (MDF 80–90) Data

 (1) (2) (3) (4)
 Eff ect of  Eff ect of TSIV Eff ect of Eff ect of One More
 Compulsory School Compulsory School Education on the Year of Education
 on the Four-Year on Education, Four-Year on Mortality at
 Mortality Rate (× 104) From Census Mortality Rate (× 104) the Mean

Mean Mortality    0.0067
(%)    –14.1–

All –0.41† 0.044* –9.41
 (0.24) (0.0010) (5.80) 

Males –0.73* 0.054* –13.43†

 (0.35) (0.012) (7.10) 

Females –0.10 0.041* –2.46
 (0.29) (0.012) (7.08)

Notes: Standard errors are in parentheses. Controls are age, age squared, female dummy variables, state-of-birth dummy 
variables, cohort dummy variables, decade dummy variables, cause-of-death dummy variables, and cause-of-death × decade 
dummy variables. Th e sample consists of whites born in the 48 U.S. states between 1901 and 1925. Standard errors for the 
TSIV estimates were calculated by using the Delta method. Coeffi  cients in columns 1 and 3 have been multiplied by 104 for 
ease of reporting.

†Signifi cant at 10%; *Signifi cant at 5%.
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Table 5. Two-Sample Instrumental Variables (TSIV) Estimates of the Eff ect of Education on the 

Probability of Dying Within 5 Years (dependent variable = 1 if died within fi ve years of 

diagnosis): SEER Data

 (1) (2) (3) (4)

 Eff ect of Eff ect of TSIV Eff ect of Eff ect of One
 Compulsory School Compulsory Education on More Year of
 on the Probability School the Probability Education on the
  of Dying on Education, of Dying in Probability of
 in Five Years From Censusa Five Years Dying at the Mean

Results for All Years, 1973–1993 

Mean mortality    0.634
(%)    –9.5–

All 0.0025* 0.0430* –0.0604*
 (0.0008) (0.0084) (0.0220)

Males 0.0018* 0.0430* –0.0436†

 (0.0009) (0.0104) (0.0231)

Females –0.0032* 0.0451* –0.0731*
 (0.0012) (0.0101) (0.0313)

Results for 1983 and 1993 Only 

Mean mortality    0.681
(%)    –10.3–

All –0.0031 0.0440* –0.0704
 (0.0022) (0.0098) (0.0524)   
 

Males –0.0040 0.0541* –0.0739
 (0.0030) (0.0124) (0.0580)

Females –0.0027 0.0405* –0.0666
 (0.0033) (0.0121) (0.0838)    

Notes: Standard errors, shown in parentheses, are clustered at the cancer-site level. Standard errors for the TSIV estimates 
were calculated by using the Delta method. Regressions include age at diagnosis, age at diagnosis squared, 47 state-of-birth 
dummy variables, 24 cohort dummy variables, 80 cancer-site dummy variables, county-of-residence dummy variables, stage-of-
cancer-at-diagnosis dummy variables, site × stage dummy variables, and site × year dummy variables. Th e sample is whites born 
in the 48 U.S. states between 1901 and 1925. 

aData for all years (1973–1993) are from the 1970, 1980, and 1990 census. Data for 1983 and 1993 only are from the 
1980 and 1990 census.

†Signifi cant at 10%. *Signifi cant at 5%.

that one more year of schooling reduces cause-specifi c, four-year mortality by about 14% 
(which is obtained by computing the ratio of the effect of one more year of school divided 
by mean mortality: 0.00094 / 0.0067).

In the SEER data (Table 5), the effect of education on cancer mortality conditional 
on diagnosis computed in the same manner is roughly –0.06. At the mean, this coeffi cient 
suggests that one more year of education reduces the probability of dying of cancer within 
fi ve years of diagnosis by about 10% (0.06 / 0.634). The effect of education we estimate is 
somewhat larger than ordinary least squares (OLS) estimates from other studies, as is the 
generally the case in studies that use compulsory education.17

17. Estimates of the effect of education in other studies suggest that one more year of education reduces 
fi ve-year mortality rates by 2% to 5% (Elo and Preston 1996). Our estimates are larger. This is probably because 
compulsory education affected individuals whose returns to education were larger than those of the average person. 
This could be the case if, for example, compulsory schooling affected individuals at the low end of the education 
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We fi nd that for the cause-specifi c mortality data (MDF 80–90), the effect of education 
on mortality is greater for men than for women. This is a commonly found result in the 
literature (e.g., see Elo and Preston 1996). In the cancer data, the pattern is less clear, with 
larger gradients for women in the full sample but larger gradients for men in the restricted 
sample (1983 and 1993 only). We also fi nd that the effect of education on mortality is 
somewhat larger in the disease-specifi c data than in the cancer data, which suggests that 
education reduces the incidence of disease as well as improving survival conditional on 
disease.

THE EFFECT OF PROGRESS ON THE EDUCATION GRADIENT IN 
MORTALITY
We now relate the education gradients by disease to progress (measured by changes in 
 mortality/survival and by number of drugs) for that disease. We report results by using 
years of compulsory schooling as our measure of education.

MDF
In Table 6, Panel A, we report estimates of Eq. (2) by using the mortality fi les (MDF 
80–90) and by using the number of drugs approved in the previous fi ve years for treatment 
of the disease as our measure of progress. We fi nd that the interaction between compulsory 
schooling and this progress measure is negative and signifi cant.

To calculate the magnitude of the effect of technological innovation on the gradient, we 
fi rst calculate the share of mortality explained by compulsory schooling at the mean level 
of innovation in the sample (about four drugs approved in the prior fi ve years; see Table 
3). The gradient is computed by multiplying this level by the coeffi cient on compulsory 
schooling interacted with drugs approved in the prior fi ve years in Table 6 (–4.84 × 10–5) 
and adding the coeffi cient on compulsory schooling itself (15.81 × 10–5). This provides an 
estimate of the effect on mortality of one year of compulsory schooling at the mean level 
of drug innovation (–0.00003555). To assess the magnitude of this value, we divide this 
estimate by the average mortality in the sample (from Table 1, 0.0067). We fi nd that the 
effect of one additional year of compulsory schooling in the presence of the average level 
of drug innovation is 0.5% of average mortality. We then repeat this analysis, increasing the 
number of drugs approved by 1 standard deviation (about fi ve additional drugs, see Table 
3). The effect of one year of additional compulsory schooling increases to 4% of average 
mortality for diseases with 1 standard deviation above the average (about 9) number of 
drugs approved in the preceding fi ve years.

We repeat the analysis using alternative measures of innovation. In Panel B, we use 
the number of drugs approved in past 10 years (rather than in the past fi ve years) and again 
fi nd negative and signifi cant interaction effects. Finally, we repeat this analysis using the 
total number of drugs approved by disease as of 1990 (not the fl ow) as the measure of 
progress (Panel C). We do this because date of approval is missing for several drugs and 
was sometimes imputed. Moreover, we want to test whether using the stock (rather than the 
fl ow of drugs) results in any bias because we use stocks in our analyses of cancer survival. 
We fi nd that the interaction with total number of drugs is also negative and signifi cant. The 
interaction coeffi cient is smaller, as one might expect given that this is a noisier measure of 
innovation.18 Our results are therefore not very sensitive to how we defi ne the period over 

distribution and these individuals have larger returns to education. It could also happen if individuals affected by 
the laws were credit constrained and would not otherwise be able to afford further education. Research on the ef-
fects of compulsory schooling in Norway has indeed found that the wage returns to those affected by the reforms 
are much larger than the average returns (Salvanes, Vaage, and Aakvik 2003). Similar arguments have been made, 
for example, in Moretti and Lochner (2004) and Lleras-Muney (2005).

18. We repeated these analysis using drugs approved in the concurrent fi ve years and obtained almost identi-
cal results.
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Table 6. Is the Eff ect of Education on Mortality Larger for Diseases With More 

Progress: Mortality Cause-of-Death Data (MDF 80–90)

 Compulsory School  Compulsory
 × Progress School

Panel A. Progress measure: Number of drugs 
approved in the past fi ve years

All (× 105) –4.84** 15.81**
 (0.35) (2.80)

Males (× 105) –5.92** 17.12**
 (0.50) (4.08)

Females (× 105) –3.77** 14.52**
 (0.41) (3.31)

Panel B. Progress measure: Number of drugs 
approved in the past 10 years

All (× 105) –3.15** 23.12**
 (0.16) (2.79)

Males (× 105) –3.76** 25.28**
 (0.28) (4.07)

Females (× 105) –2.54** 20.98**
 (0.19) (3.30)

Panel C. Progress measure: Number of drugs 
approved as of 1990

All (× 105) –0.33** 16.49**
 (0.03) (2.87)

Males (× 105) –0.41** 18.25**
 (0.04) (4.18)

Females (× 105) –0.25** 14.74**
 (0.03) (3.39)

Panel D. Progress measure: Change in mortality 
in prior decade

All (× 105) –4.45** 18.05**
 (0.07) (2.40)

Males (× 105) –4.87** 17.01**
 (0.10) (3.49)

Females (× 105) –4.03** –19.09**
 (0.08) (2.82)  

Notes: Standard errors in parentheses. Controls are age, age squared, female dummy variable, state-
of-birth dummy variables, cohort dummy variables, decade dummy variables, cause-of-death dummy 
variables, and cause-of-death × decade dummy variables. Th e sample is whites born in the 48 U.S. states 
between 1901 and 1925. All coeffi  cients and standard errors have been multiplied by 105 to facilitate 
reporting.

**Signifi cant at 1%.

which innovation in drugs is measured. These results are also robust to using the number 
of observations in a cell as weights, which suggests that the results are not driven by a few 
common or a few uncommon diseases (results available from the authors upon request).

In Panel D, we repeat the analyses using changes in mortality in the previous decade 
as the measure of progress. Again, the coeffi cients on the interaction are negative and sig-
nifi cant. The estimates of the interaction are quite similar for men and women. The gradient 
increases from 0.6% of average mortality (at the mean level of mortality change, about 5 
per 100,000) to 17% of average mortality for diseases with 1 standard deviation greater 
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than average progress between 1980 and 1990 (a reduction in cause-specifi c mortality of 
about 25 per 100,000).

SEER
Table 7 reports the results of estimating Eq. (3), using the individual SEER data. In Panel 
A, we use the number of drugs approved between 1973 and 1993 and look at individuals 
diagnosed only in 1983 and 1993. Here, all the coeffi cients are negative but statistically in-
signifi cant, most likely because the sample size is small and there is little variation in number 
of drugs approved. In Panel B, we report the results using the stock of drugs available to 
treat this type of cancer as our progress measure, and using the full sample of all individuals 
diagnosed between 1973 and 1993. We fi nd that the coeffi cients for men (and for the overall 
sample) are negative, as predicted, but that this pattern does not hold for women.

In both Panels A and B, we limit the types of progress considered to the approval of 
new drugs, thus excluding progress that takes the form of new drug combinations or off-
label uses, as well as progress that is not drug-related. The small and generally insignifi cant 
coeffi cients here suggest that other forms of progress, such as new combinations of existing 
drugs or new surgical or radiation therapies, may be more important in generating education 
gradients in cancer survival.

In Panel C, we examine the interaction between changes in fi ve-year survival and com-
pulsory schooling. The coeffi cient is negative and signifi cant for the overall sample and for 
men but, again, not for women.

The stage at which cancer is diagnosed may have changed over time differentially for 
more-educated and less-educated people. To address this concern, we repeat our analyses 
using the change in survival for each cancer at each stage of diagnosis in Panel D of this 
table. We fi nd that the gradient in cancer survival (conditional on diagnosis) is signifi cantly 
related to broader measures of progress overall and for males, but not for females.

One possible reason for this lack of robustness to gender in the SEER data may be that 
there is an unusual relationship between education and cancers of the reproductive organs 
for women, including breast cancer (Kaufmann et al. 2003). The incidence and severity 
of cancers of the reproductive system are correlated with whether a woman has ever been 
pregnant and with her age at fi rst birth (Constantino et al. 1999; Riman et al. 2002). Age 
at fi rst birth, in turn, is higher among those with more education (Martin 2000). When we 
repeat the analyses for women excluding cancers of the female reproductive system, we 
fi nd results more similar to those for men. The coeffi cients are negative and signifi cant in 
the analysis using drugs (Panel B) but insignifi cant when using other progress measures 
(Panels A, B, and D).

When the stock of drugs available for treatment is used as the measure of progress, 
the gradient increases from 0.35% of baseline mortality on average at the mean number of 
drugs (Table 3) to 0.39% of baseline mortality when we increase the number of drugs by 
1 standard deviation above the mean (about 19 drugs). When the survival change is used 
as the measure of progress, we fi nd that the survival advantage of one year of additional 
compulsory schooling increases from 0.5% to 1.3% of baseline mortality when survival 
progress increases by 1 standard deviation above average.

Overall, we fi nd support for the hypothesis that the education gradient is steepest for 
those diseases that have seen the most health-related innovation. These results are quite 
robust to the inclusion of covariates, including average income in the county of residence.19 

19. As a fi nal test of the robustness of these results, we examined the effect on the interaction between the 
gradient and progress if we randomly matched drugs to diseases (rather than matching drugs to the disease for which 
they are indicated). We did this to check that the results we obtained are not an artifact of the empirical model that 
we estimate. We randomly matched drugs to diseases 200 times in the mortality cause-of-death data and the SEER 
data, reestimated Eq. (3) for each random match, and compared our correctly matched estimate with these random 
matches. For the disease-specifi c mortality, we randomized the match only within years. The results suggest that in 
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Table 7. Is the Eff ect of Education on Mortality Larger for Diseases With More Progress: SEER 

Cancer Data

 Compulsory School  Compulsory
 × Progress School

Panel A. Progress measure: Number of drugs in the past 10 years
Sample: People diagnosed in 1983 or 1993 only

All –0.0010 0.00007
 (0.0008) (0.00262)

Males –0.0012 –0.0003
 (0.0012) (0.0046)

Females –0.0009 0.00006
 (0.0010) (0.00416)

Females, excluding cancers of the reproductive system 0.0007 –0.0066
 (0.0006) (0.0039)

Panel B. Progress measure: Number of drugs available to 
treat the condition
Sample: All people diagnosed between 1973 and 1993

All (× 105) –2 –205
 (9) (235)

Males (× 105) –16* 144.5
 (7) (203)

Females (× 105) 2 –371
 (6) (226)

Females, excluding cancers of the reproductive system (× 105) –31* 189
 (14) (246)

Panel C. Progress: Change in fi ve-year survival (conditional on 
diagnosis) in the previous decade
Sample: People diagnosed in 1983 or 1993 only

All –0.057* –0.0008
 (0.020) (0.0023)

Males –0.082** 0.0005
 (0.020) (0.0027)

Females 0.006 –0.0029
 (0.046) (0.0032)

Females, excluding cancers of the reproductive system –0.029 –0.0014
 (0.067) (0.0042)

Panel D. Progress: Change in fi ve-year survival by stage 
(conditional on diagnosis) in the previous decade
Sample: People diagnosed in 1983 or 1993 only

All –0.069** –0.0010
 (0.015) (0.0020)

Males –0.073** –0.0008
 (0.012) (0.0028)

Females –0.067 –0.0016
 (0.041) (0.0029)

Females, excluding cancers of the reproductive system –0.038 –0.0031
 (0.101) (0.0048)  

Notes: Standard errors are shown in parentheses. Clustered at the cancer-site level for cancer regressions. Regressions include 
age at diagnosis, age at diagnosis squared, 47 state-of-birth dummy variables, 24 cohort dummy variables, 80 cancer-site dummy 
variables, county-of-residence dummy variables, stage-of-cancer-at-diagnosis dummy variables, and site × stage dummy variables. 
Th e sample is whites born in the 48 U.S. states between 1901 and 1925.

*Signifi cant at 5%. **Signifi cant at 1%.
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In the cancer data, after cancer-site dummy variables are included, adding other covariates 
(including stage-of-cancer dummy variables) has little effect on the magnitude and signifi -
cance of the interaction estimates (results available upon request).

CONCLUSION
Health-related innovation has been an important source of improvements in the length and 
quality of life. Studies of technological diffusion in other contexts consistently point to 
education as a factor that increases the diffusion rate (Hall and Khan 2003). In this paper, 
we look at whether this pattern holds true in the context of health-related innovations. 
Specifi cally, we test the hypothesis that education gradients increase when health-related 
innovation increases. We relate education gradients in mortality to two measures of health-
related innovation and show that education gradients become larger for diseases with more 
innovation. We fi nd that the pattern holds for mortality rates from all causes and for cancer 
mortality conditional on diagnosis.

To obtain plausibly causal effects of education, we match individuals to the compul-
sory schooling laws that were in place in their state of birth when they were growing up. 
Because we can control for both state of birth and cohort of birth, our effects are estimated 
using changes in legislation within states over time.

Our approach has several other advantages. We use two very different measures of 
innovation: the change in mortality for a given disease, which accounts for all types of 
health-related progress; and the number of active drug ingredients recently approved to 
treat a disease, which is a very specifi c measure of medical innovation that can be dated. 
Each measure has its advantages and disadvantages, but our results do not depend on the 
measure we use.

Our fi ndings have some limitations. The use of compulsory schooling allows us to 
make causal statements with more confi dence, but it also limits the extent to which the 
fi ndings can be generalized to other settings. In particular, this study exploits changes in 
secondary schooling; we cannot make any inferences about whether increases in school-
ing at higher levels (e.g., obtaining a college degree) would result in patterns similar to 
those that we report here. The limited variation in compulsory schooling laws means that 
our approach requires using very large data sets to fi nd statistically signifi cant results. Our 
results for women are smaller and less consistent than the results for males, particularly for 
mortality conditional on cancer diagnosis. Finally, our data do not allow us to systemati-
cally examine the mechanisms through which education interacts with technology. These 
limitations suggest that further research in this area would be very valuable, particularly 
approaches that examine more recent changes in education and where schooling levels are 
more variable than in this study.

Our results are consistent with Link and Phelan’s (1995) fundamental cause hypothesis 
and with recent fi ndings that gradients are larger in diseases that can be treated (Phelan et 
al. 2004). The substantial recent increases in socioeconomic gradients in health suggest that 
further research in this area that explores how gradients arise is warranted.
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